In Pursuit of a Randomized Time Hierarchy Theorem

Karthik Gajulapalli (2018) [Survey]

June 4, 2022

Big Picture: What are Hierarchy Theorems and why study them?

- In complexity theory we are interested in the following question how does a resource affect our ability to recognize languages?
- How much power does increasing some amount of a resource have in recognizing more languages
- We have Hierarchy theorems for Time, Space, Even

Non-uniform advice for Circuits

Deterministic Time Hierarchy Theorem

- Theorem: HS[65] If f, g are time-constructible functions satisfying $\mathrm{f}(\mathrm{n}) \log (\mathrm{f}(\mathrm{n}))=\mathrm{o}(\mathrm{g}(\mathrm{n}))$ then
DTIME $(f(n)) \subsetneq$ DTIME $(g(n))$
- Proof:
- Idea: Use Diagnolization
- Define D: simulate M_{i} on input x_{i} for $g(n)$ steps. Then flip the answer; if doesn't halt set to 0
- Imagine \exists TM M such that M can solve D in $\operatorname{TIME(f(n))\text {,then}}$ $M(x)=D(x) \forall x$ and $M(x)$ runs in time $f(|x|)$ So Now $M(M)=b$ in Time $f(n)$ by assumption But $D(M)=1-b$ which means $M(x) \neq D(x)$ thus causing a contradiction
- Hence Proved !!

Non-Deterministic Time Hierarchy Theorem

- Theorem: Cook[71]

If f, g are time-constructible functions satisfying $\mathrm{f}(\mathrm{n}+1)=\mathrm{o}(\mathrm{g}(\mathrm{n}))$ then NTIME $(f(n)) \subsetneq \operatorname{NTIME}(g(n))$

- Proof:
- Problem: Cannot use same approach (Why??)
- Idea: Use Lazy Diagonalization

Quick Review of Probabilistic Polynomial Time

- Difference between PTM vs NDTM is that in a PTM I am interested in the fraction of branches that accept, while in NDTM I am interested in whethere a single branch accepts
- BPTIME(Bounded Error Probabilistic Time):
- BPTIME(f(n)) if RT(f(n),f(n)) $\operatorname{Pr}[M(x)=L(x)] \geq 2 / 3$
- BPP = BPTIME (n^{c})
- RPTIME(Randomized Time):
- RTIME(f(n)) if RT(f(n),f(n)) if $x \in L, \operatorname{Pr}[M(x)=1] \geq 2 / 3$ if $\mathrm{x} \notin \mathrm{L}, \operatorname{Pr}[\mathrm{M}(\mathrm{x})=1]=0$
- RP $=\operatorname{RTIME}\left(n^{c}\right)$

Hierarchy Theorems on PTMs

Question: Can I use some kind of diagonalization hack on PTMs to achieve hierarchy results?

Syntactical vs Semantic TMs

- Syntactic: Can exactly enumerate all the TM's (DTM, NDTM)
- Semantic: Cannot exactly enumerate each TM (PTM's and Quantum Machines with one,two and zero sided error)
- For example in BPP there is a special property
$\forall x \in\{0,1\}^{*}$ either $\operatorname{Pr}[M(x)=1] \geq 2 / 3$ or $\operatorname{Pr}[M(x)=1] \leq$ $1 / 3$.
It is undecidable to test whether a machine can satisfy this property
- It is also unknown whether we can test if a machine M satisfies this for a given input in less than 2^{n} steps

Goal

Main Goal of Today:

Try achieving Hierarchy for BPP to something like this:
$\operatorname{BPTIME}\left(n^{d}\right) \subsetneq \operatorname{BPTIME}\left(n^{d+1}\right) \forall \mathrm{d} \geq 1$

Always Start with Brute Force

$\mathbf{R T}\left(\mathrm{p}(\mathrm{n}), p^{*}(\mathrm{n})\right) \subsetneq \mathbf{R} \mathbf{T}\left(2^{p^{*}(n)} \mathrm{p}(\mathrm{n}) \log ^{2} p(n), p^{*}(\mathrm{n})\right)$

But this is terrible we shouldn't have to expect an exponential blow up between two slices

Idea 2: There exists a Hierarchy if BPP has a complete problem

BPTime-hard We say that L is BPTIME-hard if \exists constant c such that for any time constructible function t and any language L^{\prime} BPTIME(t) there exists a deterministic $t(|x|)^{c}$ time computable function f such that $\forall x, x$ in $L^{\prime} \Longleftrightarrow f(x) \in L$

BPP-complete if $\mathrm{L} \in \mathrm{BPP}$ and BPTIME-hard.

Promise Problems

DEF 1: A promise problem π is a pair of sets $\left(\pi_{Y}, \pi_{N}\right)$ where π_{Y}, π_{N} are disjoint.

DEF 2: Let $\mathrm{t}(\mathrm{n})$ be a function on the Naturals, We say that $\pi=$ $\left(\pi_{Y}, \pi_{N}\right)$ is in PromiseBPTime $(\mathrm{t}(\mathrm{n}))$ if there exists a probabilistic $\mathrm{t}(\mathrm{n})$-time machine M such that $\mathrm{x} \in \pi_{Y} \Longrightarrow \operatorname{Pr}[\mathrm{M}(\mathrm{x})=1]>2 / 3$ and $x \in \pi_{N} \Longrightarrow \operatorname{Pr}[\mathrm{M}(\mathrm{x})=1]<1 / 3$.
We now define PromiseBPP $=U_{c}$ PromiseBPTime $\left(n^{c}\right)$

Promise BPP has A hierarchy

PromiseBPTime has a PromiseBPTime-complete language so we get a hierarchy of the form PromiseBPTime $\left(n^{d}\right) \subsetneq$ PromiseBPTIME $\left(n^{d+1}\right) \forall d$.

CAP:

The promise problem Circuit Acceptance Probability is the pair $\left(C A P_{Y}, C A P_{N}\right)$ where $C A P_{Y}$ contains all circuits C such that $\operatorname{Pr}_{x}[C(x)=1]>2 / 3$ and $C A P_{N}$ contains all circuits C such that $\operatorname{Pr}_{x}[C(x)=1]<1 / 3$.
CAP \in PromiseBPP
Consistent: We say that a language L is consist with a promise problem $\pi=\left(\pi_{Y}, \pi_{N}\right)$ if $\forall x \in\{0,1\}^{*}$ it holds that $x \in \pi_{Y} \Longrightarrow$ $x \in L$ and $x \in \pi_{N} \Longrightarrow x \notin L$.

Lemma : Let L be a a language consistent with the promise problem CAP. Then L is BPtime-hard.
Proof : Any Language L' can be reduced to CAP and there fore to L in t^{2} steps using a Cook-Levin Reduction.

Corollary 1: If there exists a language L such that:

1. L is consistent with the promise problem CAP.
2. $L \in B P P$

Then there exists a BPP-complete language.

Some Helpful Lemmas

All following scaling up lemmas should follow from relatively straightforward padding.
Lemma 1: \forall constant $d \geq 1$, if $\operatorname{BPTIME}\left(n^{d}\right)=\operatorname{BPTIME}\left(n^{d+1}\right)$ then $\operatorname{BPTIME}\left(n^{d}\right)=\operatorname{BPP}$.
Lemma 2: \forall constant $d \geq 1$, if $\operatorname{BPTIME}\left(n^{d}\right)=\operatorname{BPP}$ then $\operatorname{BPTIME}(\mathrm{t}(\mathrm{n}))=\operatorname{BPTIME}\left(t(n)^{c}\right)$ for every constant $\mathrm{c} \geq 1$ and time-constructible function t that satisfies $t(n) \geq n^{d}$
Corollary 2 from above: For every constant $d \geq 1$, if there exists a time constructible function t and a constant $\mathrm{c}>1$ such that $\mathrm{t}(\mathrm{n})$ $\geq n^{d}$ and $\operatorname{BPTIME}(\mathrm{t}(\mathrm{n})) \subsetneq \operatorname{BPTIME}\left(t(n)^{c}\right)$ then $\operatorname{BPTIME}\left(n^{d}\right) \subsetneq$ $\operatorname{BPTIME}\left(n^{d+1}\right)$

Finally the Hierarchy Theorem

Theorem: Suppose that BPP has a complete problem. Then there exists a constant c such that for every time-constructible t it holds that $\operatorname{BPTIME}(\mathrm{t}) \subsetneq \operatorname{BPTIME}\left(t^{c}\right)$.
And from Corollary 2, this proves that BPTIME($n^{d} \subsetneq$ $\operatorname{BPTIME}\left(n^{d+1}\right) \forall d \geq 1$.

Proof

1. Let L be a BPP-complete problem and let M_{L} be its accepting TM that runs in time n^{a} for some constant a.
2. We know that there exists a constant b such that for every time-constructible function t, every language in $\operatorname{BPTime}(t)$ is reducible to L using a t^{b}-time deterministic reduction.
3. For a string i, let M_{i} be the i-th deterministic TM. Define the language K such that $\mathrm{x} \in \mathrm{K} \Longleftrightarrow M_{x}^{t(x) b}(\mathrm{x}) \notin \mathrm{L}$. We get:
(a) $\mathrm{K} \in \operatorname{BPTIME}\left(t^{O(a b)}\right)$.
(b) $\mathrm{K} \notin \operatorname{BPTIME}(\mathrm{t})$.

Item(a) is true since we can decide K by negating $M_{L}\left(M_{x}(x)\right)$,
and it takes $t(\|x\|)^{O(a b)}$ time. To prove item(b) let us assume for sake of contradiction that $K \in \operatorname{BPTIME}(\mathrm{t})$. L is complete for BPP. So there exists an i such that $i \in K \Longleftrightarrow M_{i}$ (i) running in time $t(i)^{b} \in \mathrm{~L}$. But by definition of K this happens $\Longleftrightarrow \mathrm{i} \notin \mathrm{K}$ and we get a contradiction.

Other Work

- A slightly non-uniform probabistic time hierarchy theorem [Barak 02]
- Hierarchy Theorems for PPT [Fortnow, Santhanam 04]
- From Log Bit to 1 Bit [Goldreich, Sudhan, Trevisan 05]
- Circuit Lower bounds for MA/1 [Santhanam 07]

Thank you !!!!

