In Pursuit of a Randomized Time Hierarchy Theorem

Karthik Gajulapalli (2018) [Survey]

June 4, 2022

Big Picture: What are Hierarchy Theorems and why study them?

- In complexity theory we are interested in the following question how does a resource affect our ability to recognize languages?
- How much power does increasing some amount of a resource have in recognizing more languages
- We have Hierarchy theorems for Time, Space, Even Non-uniform advice for Circuits

Deterministic Time Hierarchy Theorem

► Theorem: HS[65] If f,g are time-constructible functions satisfying f(n) log (f(n)) = o(g(n)) then DTIME(f(n)) ⊊ DTIME(g(n))

Proof:

- Idea: Use Diagnolization
- Define D: simulate M_i on input x_i for g(n) steps. Then flip the answer; if doesn't halt set to 0
- Imagine ∃ TM M such that M can solve D in TIME(f(n)), then M(x) = D(x) ∀ x and M(x) runs in time f(|x|) So Now M(M) = b in Time f(n) by assumption But D(M) = 1-b which means M(x) ≠ D(x) thus causing a contradiction
- Hence Proved !!

Non-Deterministic Time Hierarchy Theorem

- Proof:
 - Problem: Cannot use same approach (Why??)
 - Idea: Use Lazy Diagonalization

Quick Review of Probabilistic Polynomial Time

- Difference between PTM vs NDTM is that in a PTM I am interested in the fraction of branches that accept, while in NDTM I am interested in whethere a single branch accepts
- BPTIME(Bounded Error Probabilistic Time):
 - ▶ BPTIME(f(n)) if RT(f(n), f(n)) Pr [M(x) = L(x)] ≥ 2/3
 - BPP = BPTIME(n^c)

RPTIME(Randomized Time):

 RTIME(f(n)) if RT(f(n), f(n)) if x ∈ L, Pr [M(x) = 1] ≥ 2/3 if x ∉ L, Pr [M(x) = 1] = 0
 RP = RTIME(n^c)

Hierarchy Theorems on PTMs

Question: Can I use some kind of diagonalization hack on PTMs to achieve hierarchy results?

Syntactical vs Semantic TMs

- Syntactic: Can exactly enumerate all the TM's (DTM, NDTM)
- Semantic: Cannot exactly enumerate each TM (PTM's and Quantum Machines with one,two and zero sided error)
 - For example in BPP there is a special property $\forall x \in \{0,1\}^*$ either $\Pr[M(x) = 1] \ge 2/3$ or $\Pr[M(x) = 1] \le 1/3$.

It is undecidable to test whether a machine can satisfy this property

It is also unknown whether we can test if a machine M satisfies this for a given input in less than 2ⁿ steps

Main Goal of Today:

Try achieving Hierarchy for BPP to something like this: BPTIME $(n^d) \subsetneq$ BPTIME $(n^{d+1}) \forall d \ge 1$

Always Start with Brute Force

RT $(p(n), p^*(n)) \subsetneq \mathbf{RT}(2^{p^*(n)}p(n)\log^2 p(n), p^*(n))$

But this is terrible we shouldn't have to expect an exponential blow up between two slices

Idea 2: There exists a Hierarchy if BPP has a complete problem

BPTime-hard We say that L is BPTIME-hard if \exists constant c such that for any time constructible function t and any language L' BPTIME(t) there exists a deterministic $t(|x|)^c$ time computable function f such that $\forall x, x \text{ in } L' \iff f(x) \in L$

BPP-complete if $L \in BPP$ and BPTIME-hard.

DEF 1: A promise problem π is a pair of sets (π_Y, π_N) where π_Y, π_N are disjoint.

DEF 2: Let t(n) be a function on the Naturals, We say that $\pi = (\pi_Y, \pi_N)$ is in PromiseBPTime(t(n)) if there exists a probabilistic t(n)-time machine M such that $x \in \pi_Y \implies \Pr[M(x) = 1] > 2/3$ and $x \in \pi_N \implies \Pr[M(x) = 1] < 1/3$. We now define PromiseBPP = U_c PromiseBPTime (n^c)

Promise BPP has A hierarchy

PromiseBPTime has a PromiseBPTime-complete language so we get a hierarchy of the form PromiseBPTime $(n^d) \subsetneq$ PromiseBPTIME $(n^{d+1}) \forall d$.

CAP:

The promise problem Circuit Acceptance Probability is the pair (CAP_Y, CAP_N) where CAP_Y contains all circuits C such that $Pr_x[C(x) = 1] > 2/3$ and CAP_N contains all circuits C such that $Pr_x[C(x) = 1] < 1/3$. CAP \in PromiseBPP

Consistent: We say that a language L is consist with a promise problem $\pi = (\pi_Y, \pi_N)$ if $\forall x \in \{0, 1\}^*$ it holds that $x \in \pi_Y \implies x \in L$ and $x \in \pi_N \implies x \notin L$.

Lemma : Let L be a a language consistent with the promise problem CAP. Then L is BPtime-hard. **Proof :** Any Language L' can be reduced to CAP and there fore to L in t^2 steps using a Cook-Levin Reduction.

Corollary 1: If there exists a language L such that:
1. L is consistent with the promise problem CAP.
2. L ∈ BPP
Then there exists a BPP-complete language.

Some Helpful Lemmas

All following scaling up lemmas should follow from relatively straightforward padding.

Lemma 1: \forall constant $d \geq 1$, if BPTIME $(n^d) = BPTIME(n^{d+1})$ then BPTIME $(n^d) = BPP$.

Lemma 2: \forall constant $d \ge 1$, if BPTIME (n^d) = BPP then BPTIME (t(n)) = BPTIME $(t(n)^c)$ for every constant $c \ge 1$ and time-constructible function t that satisfies $t(n) \ge n^d$

Corollary 2 from above: For every constant $d \ge 1$, if there exists a time constructible function t and a constant c > 1 such that $t(n) \ge n^d$ and BPTIME $(t(n)) \subsetneq$ BPTIME $(t(n)^c)$ then BPTIME $(n^d) \subsetneq$ BPTIME (n^{d+1}) **Theorem:** Suppose that BPP has a complete problem. Then there exists a constant c such that for every time-constructible t it holds that BPTIME(t) \subsetneq BPTIME(t^c). And from Corollary 2, this proves that BPTIME($n^d \subsetneq$ BPTIME(n^{d+1}) $\forall d \ge 1$.

Proof

1. Let L be a BPP-complete problem and let M_L be its accepting TM that runs in time n^a for some constant a.

2. We know that there exists a constant b such that for every time-constructible function t, every language in BPTime(t) is reducible to L using a t^b -time deterministic reduction. 3. For a string i, let M_i be the i-th deterministic TM. Define the language K such that $x \in K \iff M_x^{t(x)b}(x) \notin L$. We get: (a) $K \in BPTIME(t^{O(ab)})$.

(b) $K \notin BPTIME(t)$. Item(a) is true since we can decide K by negating $M_L(M_x(x))$,

and it takes $t(||x||)^{O(ab)}$ time. To prove item(b) let us assume for sake of contradiction that $K \in BPTIME(t)$. L is complete for BPP. So there exists an i such that $i \in K \iff M_i$ (i) running in time $t(i)^b \in L$. But by definition of K this happens $\iff i \notin K$ and we get a contradiction.

Other Work

- A slightly non-uniform probabistic time hierarchy theorem [Barak 02]
- Hierarchy Theorems for PPT [Fortnow, Santhanam 04]
- From Log Bit to 1 Bit [Goldreich, Sudhan, Trevisan 05]
- Circuit Lower bounds for MA/1 [Santhanam 07]

Thank you !!!!