In Pursuit of a Randomized Time Hierarchy Theorem

Karthik Gajulapalli (2018) [Survey]

June 4, 2022
Big Picture: What are Hierarchy Theorems and why study them?

- In complexity theory we are interested in the following question: how does a resource affect our ability to recognize languages?
- How much power does increasing some amount of a resource have in recognizing more languages?
- We have Hierarchy theorems for Time, Space, Even Non-uniform advice for Circuits.
Theorem: HS[65]

If \(f, g \) are time-constructible functions satisfying
\(f(n) \log (f(n)) = o(g(n)) \) then
\[
\text{DTIME}(f(n)) \subsetneq \text{DTIME}(g(n))
\]

Proof:

- Idea: Use Diagnolization
- Define \(D \): simulate \(M_i \) on input \(x_i \) for \(g(n) \) steps. Then flip the answer; if doesn’t halt set to 0
- Imagine \(\exists \) TM \(M \) such that \(M \) can solve \(D \) in \(\text{TIME}(f(n)) \), then \(M(x) = D(x) \) \(\forall x \) and \(M(x) \) runs in time \(f(|x|) \)
- So Now \(M(M) = b \) in Time \(f(n) \) by assumption
- But \(D(M) = 1-b \) which means \(M(x) \neq D(x) \) thus causing a contradiction
- Hence Proved!!
Non-Deterministic Time Hierarchy Theorem

- Theorem: Cook[71]
 If f,g are time-constructible functions satisfying $f(n+1) = o(g(n))$ then
 $\text{NTIME}(f(n)) \subsetneq \text{NTIME}(g(n))$

- Proof:
 - Problem: Cannot use same approach (Why??)
 - Idea: Use Lazy Diagonalization
Quick Review of Probabilistic Polynomial Time

- Difference between PTM vs NDTM is that in a PTM I am interested in the fraction of branches that accept, while in NDTM I am interested in whether a single branch accepts.

- **BPTIME (Bounded Error Probabilistic Time):**
 - $\text{BPTIME}(f(n))$ if $\text{RT}(f(n), f(n))$
 - $\Pr [M(x) = L(x)] \geq \frac{2}{3}$
 - $\text{BPP} = \text{BPTIME}(n^c)$

- **RPTIME (Randomized Time):**
 - $\text{RTIME}(f(n))$ if $\text{RT}(f(n), f(n))$
 - if $x \in L$, $\Pr [M(x) = 1] \geq \frac{2}{3}$
 - if $x \notin L$, $\Pr [M(x) = 1] = 0$
 - $\text{RP} = \text{RTIME}(n^c)$
Question: Can I use some kind of diagonalization hack on PTMs to achieve hierarchy results?
Syntactical vs Semantic TMs

- **Syntactic:** Can exactly enumerate all the TM’s (DTM, NDTM)
- **Semantic:** Cannot exactly enumerate each TM (PTM’s and Quantum Machines with one,two and zero sided error)
 - For example in BPP there is a special property
 \[\forall x \in \{0, 1\}^* \text{ either } \Pr[M(x) = 1] \geq 2/3 \text{ or } \Pr[M(x) = 1] \leq 1/3. \]
 It is undecidable to test whether a machine can satisfy this property
 - It is also unknown whether we can test if a machine M satisfies this for a given input in less than \(2^n\) steps
Main Goal of Today:
Try achieving Hierarchy for BPP to something like this:
\[\text{BPTIME}(n^d) \subsetneq \text{BPTIME}(n^{d+1}) \quad \forall \ d \geq 1 \]
Always Start with Brute Force

\[\text{RT} \ (p(n), \ p^*(n)) \subsetneq \text{RT} \ (2^{p^*(n)}p(n)\log^2 p(n), \ p^*(n)) \]

But this is terrible we shouldn’t have to expect an exponential blow up between two slices
Idea 2: There exists a Hierarchy if BPP has a complete problem

BPTime-hard We say that L is BPTIME-hard if \exists constant c such that for any time constructible function t and any language L', $\text{BPTIME}(t)$ there exists a deterministic $t(|x|)^c$ time computable function f such that $\forall x, x \in L' \iff f(x) \in L$

BPP-complete if $L \in \text{BPP}$ and BPTIME-hard.
DEF 1: A promise problem π is a pair of sets (π_Y, π_N) where π_Y, π_N are disjoint.

DEF 2: Let $t(n)$ be a function on the Naturals, We say that $\pi = (\pi_Y, \pi_N)$ is in PromiseBPTime($t(n)$) if there exists a probabilistic $t(n)$-time machine M such that $x \in \pi_Y \implies \Pr[M(x) = 1] > 2/3$ and $x \in \pi_N \implies \Pr[M(x) = 1] < 1/3$.

We now define PromiseBPP = \bigcup_c PromiseBPTime(n^c)
Promise BPP has A hierarchy

PromiseBPTime has a PromiseBPTime-complete language so we get a hierarchy of the form PromiseBPTime(n^d) ⊊ PromiseBPTIME(n^{d+1}) ∀ d.

CAP:
The promise problem Circuit Acceptance Probability is the pair (CAP_Y, CAP_N) where CAP_Y contains all circuits C such that $Pr_x[C(x) = 1] > 2/3$ and CAP_N contains all circuits C such that $Pr_x[C(x) = 1] < 1/3$.

$CAP \in$ PromiseBPP

Consistent: We say that a language L is consist with a promise problem $\pi = (\pi_Y, \pi_N)$ if $\forall x \in \{0, 1\}^*$ it holds that $x \in \pi_Y \implies x \in L$ and $x \in \pi_N \implies x \notin L$.
Lemma: Let L be a language consistent with the promise problem CAP. Then L is BPtime-hard.

Proof: Any Language L' can be reduced to CAP and therefore to L in t^2 steps using a Cook-Levin Reduction.

Corollary 1: If there exists a language L such that:
1. L is consistent with the promise problem CAP.
2. $L \in \text{BPP}$
Then there exists a BPP-complete language.
All following scaling up lemmas should follow from relatively straightforward padding.

Lemma 1: \(\forall \) constant \(d \geq 1 \), if \(\text{BPTIME}(n^d) = \text{BPTIME}(n^{d+1}) \) then \(\text{BPTIME}(n^d) = \text{BPP} \).

Lemma 2: \(\forall \) constant \(d \geq 1 \), if \(\text{BPTIME}(n^d) = \text{BPP} \) then \(\text{BPTIME}(t(n)) = \text{BPTIME}(t(n)^c) \) for every constant \(c \geq 1 \) and time-constructible function \(t \) that satisfies \(t(n) \geq n^d \).

Corollary 2 from above: For every constant \(d \geq 1 \), if there exists a time constructible function \(t \) and a constant \(c > 1 \) such that \(t(n) \geq n^d \) and \(\text{BPTIME}(t(n)) \subsetneq \text{BPTIME}(t(n)^c) \) then \(\text{BPTIME}(n^d) \subsetneq \text{BPTIME}(n^{d+1}) \).
Theorem: Suppose that BPP has a complete problem. Then there exists a constant c such that for every time-constructible t it holds that $\text{BPTIME}(t) \nsubseteq \text{BPTIME}(t^c)$.
And from Corollary 2, this proves that $\text{BPTIME}(n^d) \nsubseteq \text{BPTIME}(n^{d+1}) \forall d \geq 1$.
Proof

1. Let L be a BPP-complete problem and let M_L be its accepting TM that runs in time n^a for some constant a.
2. We know that there exists a constant b such that for every time-constructible function t, every language in $\text{BPTime}(t)$ is reducible to L using a t^b-time deterministic reduction.
3. For a string i, let M_i be the i-th deterministic TM. Define the language K such that $x \in K \iff M_x^{t(x)b}(x) \notin L$. We get:
 (a) $K \in \text{BPTIME}(t^{O(ab)})$.
 (b) $K \notin \text{BPTIME}(t)$.
 Item(a) is true since we can decide K by negating $M_L(M_x(x))$, and it takes $t(||x||)^{O(ab)}$ time. To prove item(b) let us assume for sake of contradiction that $K \in \text{BPTIME}(t)$. L is complete for BPP. So there exists an i such that $i \in K \iff M_i(i)$ running in time $t(i)^b \in L$. But by definition of K this happens $\iff i \notin K$ and we get a contradiction.
Other Work

- A slightly non-uniform probabistic time hierarchy theorem [Barak 02]
- Hierarchy Theorems for PPT [Fortnow, Santhanam 04]
- From Log Bit to 1 Bit [Goldreich, Sudhan, Trevisan 05]
- Circuit Lower bounds for MA/1 [Santhanam 07]
Thank you !!!!