Stablity-Preserving, Time-Efficient Mechanism for School Choice in Two Rounds

Karthik Gajulapalli, James Liu, Tung Mai, Vijay Vazirani
November 23, 2020

Stable Matching

Classic Stable Matching Problem

Problem (Stable Matching)

There is a set of n boys and n girls. Each boy has a preference list that is a total order over the girls, and similarly each girl has a preference list that is a total order over the boys.

Blocking Pair: A boy b, and girl g, form a blocking pair to an assignment of boys and girls if they both prefer each other over their partners in the assignment.

Goal: Output a perfect matching of boys and girls with no blocking pairs.

Classic Stable Matching

Problem (Stable Matching Problem)

Solution [Gale, Shapley]

There exists a mechanism (Differed Accept) that produces a stable matching with the following properites:

- Differed Accept runs in polynomial time
- Differed Accept produces a girl-optimal stable matching, i.e. each girl gets teh best possible partner she could have gotten in any stable matching
- Differed Accpet is startegy-proof (DSIC) for girls [Dubins,..]

School Choice

Problem (Stable Matching for Schol Choice)

- Set of Schools, $H=\left\{h_{1}, \ldots, h_{n}\right\}$
- Set of Students, $S=\left\{s_{1}, \ldots s_{m}\right\}$
- Preference list of students over schools $I\left(s_{i}\right)$ for all $s_{i} \in S$, where $I\left(s_{i}\right)=\pi(H \cup \emptyset)$
- Preference list of schools over students I($\left.h_{j}\right)$ for all $h_{j} \in H$, where $I\left(h_{j}\right)=\pi(S \cup \emptyset)$
- capacity function $c: H \rightarrow Z$, such that $c\left(h_{j}\right)$ represents the capacity of school h_{j}.

Updated Blocking Pair:

- h_{j} preferes s_{i} to one of the students assinged to h_{j} (type 1), or
- h_{j} is under-filled and h_{j} prefers s_{i} to $\emptyset(t y p e 2)$.

Structural Properties of Stable Matchings

Theorem

Rural Hospitals Theorem [R86]:

- Over all the stable matchings of the given instance: the set of matched students is the same and the number of students matced to each school is also the same.
- Assume that school, h, is not matched to capacity in one stable matching. Then, the set of students matched to h is the same over all stable matchings.

Theorem

The set of stable matchings characterize a finite distributive lattice.

Two Round Setting

We consider a two round setting.

- In Round \mathcal{R}_{1}, mechanism \mathcal{M}_{1} finds a student-optimal stable matching
- In round \mathcal{R}_{2}, the parameters of the problem change, and we require a mechanism \mathcal{M}_{2} that returns a stable matching consistent with the new parameters

Types of Results

- Type A: Mechanism \mathcal{M}_{2} is not allowed to reassingn the school of any students matched by \mathcal{M}_{1}
- Type B: Mechanism \mathcal{M}_{2} is allowed to reassign the school of students matched by \mathcal{M}_{1}, but it must provably minimize ssuch reassignments
- Type C: NP-Hardness Results for \mathcal{M}_{2}

Setting A1

- Let M be the stable matching found by \mathcal{M}_{1} in \mathcal{R}_{1}.
- Let S_{M} denote the students who got matched in \mathcal{M}_{1}.
- Let $L=S-S_{M}$ be the set of students who don't get matched in round \mathcal{R}_{1}

Theorem

There is a polynomial time mechanism \mathcal{M}_{2} that extends matching M to M^{\prime} so that M^{\prime} is stable w.r.t students S and schools H.
Furthermore \mathcal{M}_{2} yields the largest matching that can be obtained by the mechanism satisfying these conditions.

Mechanism

- For each school h_{j} find the first student on its preference list such that $s_{i} \in S_{M}$ and s_{i} prefers $h_{j} S_{M}$ and s_{i} prefers h_{j} to current school. (Barrier $\left(h_{j}\right)=s_{i}$)
- For each $s_{i} \in L$ update their preference lists to only include schools where they are left of the barrier for that school.
- Assign each $s_{i} \in L$ their favorite school from their preference list
- Return updated matching M^{\prime}

Proof Idea

- Are any blocking pairs induced?
- What about students who didn't get matched in round \mathcal{R}_{2}
- Is it incentive compatible??

Incentive Compatibility

Example

$$
\begin{array}{lll}
S_{1}: & H_{1} & H_{2} \\
S_{2}: & H_{1} & H_{2} \\
H_{1}: & S_{1} & S_{2} \\
H_{2}: & S_{2} & S_{1}
\end{array}
$$

Each school has capacity 1 in round \mathcal{R}_{1}

- Truthful reporting will result in $M=M^{\prime}=\left(S_{1}, H_{1}\right),\left(S_{2}, H_{2}\right)$
- If S_{2} instead misreports her preference list as $\left(H_{1}, \emptyset\right)$ then $M=\left(S_{1}, H_{1}\right)$, and $M^{\prime}=\left(S_{1}, H_{1}\right),\left(S_{2}, H_{1}\right)$.
- S_{2} does better by cheating.

Setting A2

This setting follows from Setting A1

- Let N, be a set of new students who also arrive in round \mathcal{R}_{2}.
- $M I N_{N} M A X_{L}$ asks for a stable extension in round \mathcal{R}_{2} that minimizes the number of students who get matched in N and subject to that maximize the number of students matched from L

Theorem

There is a polynomial time mechanism \mathcal{M}_{2} for:

- $\operatorname{MIN}_{N} M A X_{L}$
- $M A X_{N} M A X_{L}$
- $M A X_{N \cup L}$

Proof Sketch $M I N_{N} M A X_{L}$

- $s_{i} \in N$ who form blocking pairs with schools must be matched
- Let $S_{N L}$ be the students in N who don't form blocking pairs, they won't be in any matching
- Consider the barriers for schools defined by students in S_{M} and $S_{N L}$, and set the barrier to be the stricter of the two.
- update the preference lists of all students in $L, N-S_{N L}$ to include only schools where they lie to the left of the barrier.
- Matching these students to their favorite school results in a stable extentions that minimizes the number of students in N, and subject to that maximizes L
- $M A X_{N} M A X_{L}, M A X_{N \cup L}$ can be done similarly

Some NP Hardness for A2

Theorem

The following problems are NP-Hard:

- $M A X_{L} M I N_{N}$
- $M A X_{N} M I N_{L}$
- Choose k students from N, such that it will maximize the number of students matched from L

Setting B1

- In round \mathcal{R}_{2} a set of new schools H^{\prime} arrive, and original schools can increase their capacity.
- Students can now move, but we want to minize the number of students who are re-allocated in round \mathcal{R}_{2}.

Theorem

There is a polynomial time mechansim \mathcal{M}_{2} that finds a minimum stable re-allocation with respect to round \mathcal{R}_{1} matching M, students S, and schools $H \cup H^{\prime}$

Setting B1 GS-counterexample

Example

$$
\begin{array}{lll}
S_{1}: & H_{2} & H_{1} \\
S_{2}: & H_{1} & H_{2} \\
H_{1}: & S_{1} & S_{2} \\
H_{2}: & S_{2} & S_{1}
\end{array}
$$

In round \mathcal{R}_{1} school H_{1} has one seat and and school H_{2} arrives in round \mathcal{R}_{2}.

- Round \mathcal{R}_{1} matching is just $\left(S_{1}, H_{1}\right)$
- Running Gale-Shapley in round \mathcal{R}_{2} results in $\left(S_{1}, H_{2}\right),\left(S_{2}, H_{1}\right)$ requiring one re-allocation.
- However there is a stable matching $\left(S_{1}, H_{1}\right),\left(S_{2}, H_{2}\right)$ that requires no re-allocations.

Structural Properties of MSR

Lemma

Each student weakly improves in any minimum stable re-allocation

Lemma

All minimum stable re-allocations move the same set of students, S_{R}

Proof Sketch

- Let there be two $M S R$, such that s_{i} is moved in one and not in the other, i.e. $M\left(s_{i}\right)=M^{\prime}\left(s_{i}\right) \neq M^{\prime \prime}\left(s_{i}\right)$.
- Then the following are possible cases for s_{i} :

$$
\begin{aligned}
& \text { 1. } S_{1}=\left\{s_{i} \in S_{M} \mid M\left(s_{i}\right)=M^{\prime}\left(s_{i}\right) \neq M^{\prime \prime}\left(s_{i}\right)\right\} \\
& \text { 2. } S_{2}=\left\{s_{i} \in S_{M} \mid M\left(s_{i}\right)=M^{\prime \prime}\left(s_{i}\right) \neq M^{\prime}\left(s_{i}\right)\right\} \\
& \text { 3. } S_{3}=\left\{s_{i} \in S_{M} \mid M\left(s_{i}\right) \neq M^{\prime}\left(s_{i}\right), M\left(s_{i}\right) \neq M^{\prime \prime}\left(s_{i}\right)\right\} \\
& \text { 4. } S_{4}=\left\{s_{i} \in S_{M} \mid M\left(s_{i}\right)=M^{\prime}\left(s_{i}\right)=M^{\prime \prime}\left(s_{i}\right)\right\}
\end{aligned}
$$

- Consider the matching $M_{L}=M^{\prime} \wedge M^{\prime \prime}$ where each student goes to the school she prefers less.
- By the first lemma this will send all s_{i} in S_{1}, S_{2} and S_{4} to their original schools
- M_{L} requires fewer re-allocations, a contradiction.

MSR Lattice

Theorem

The set of minimum stable re-allocations form a sub-lattice of the stable matching lattice.

- You can divide students into two groups moved, fixed
- Since the students who move are fixed, you can define a smaller stable matching instance over these students
- adding the matching restricted to the fixed studennts will give a minimum stable re-allocation

Mechansim for adding School

- While there exists a school with a vacant seat, and a student who prefers that school to its current match, match the school and student
- the above mechanism terminates and returns a school-optimal minimal stable re-allocation. (Proof by Induction)
- To get a student-optimal minimum stable re-allocation, find the moving students from running school-optimal mechanism, then construct special stable matching instance over moving students and find a school-optimal matching there.
- Not incentive-compatible!!!!

Setting B2

- In round \mathcal{R}_{2} a set of new students arrive, the capacity of schools doesn't change

Theorem

There is a polynomial mechanism \mathcal{M}_{2} that finds a minimum stable re-allocation with respect to round \mathcal{R}_{1} maching M, students $S \cup N$, and schools H.

Open Problems

- Incentive Compatible Mechanisms??
- Approximation Algorithms for NP-Hard Problems??

Thank You!

