
Stablity-Preserving, Time-Efficient Mechanism

for School Choice in Two Rounds

Karthik Gajulapalli, James Liu, Tung Mai, Vijay Vazirani

November 23, 2020

1



Stable Matching



Classic Stable Matching Problem

Problem (Stable Matching)

There is a set of n boys and n girls. Each boy has a preference list

that is a total order over the girls, and similarly each girl has a

preference list that is a total order over the boys.

Blocking Pair: A boy b, and girl g , form a blocking pair to an

assignment of boys and girls if they both prefer each other over

their partners in the assignment.

Goal: Output a perfect matching of boys and girls with no

blocking pairs.
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Classic Stable Matching

Problem (Stable Matching Problem)

Solution [Gale, Shapley]

There exists a mechanism (Differed Accept) that produces a stable

matching with the following properites:

• Differed Accept runs in polynomial time

• Differed Accept produces a girl-optimal stable matching, i.e.

each girl gets teh best possible partner she could have gotten

in any stable matching

• Differed Accpet is startegy-proof (DSIC) for girls [Dubins,..]
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School Choice

Problem (Stable Matching for Schol Choice)

• Set of Schools, H = {h1, ..., hn}
• Set of Students, S = {s1, ...sm}
• Preference list of students over schools l(si ) for all si ∈ S ,

where l(si ) = π(H ∪ ∅)
• Preference list of schools over students l(hj) for all hj ∈ H,

where l(hj) = π(S ∪ ∅)
• capacity function c : H → Z , such that c(hj) represents the

capacity of school hj .

Updated Blocking Pair:

• hj preferes si to one of the students assinged to hj (type 1), or

• hj is under-filled and hj prefers si to ∅ (type 2).

Good news: All properties from one-one stable matching carry

over!!!!
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Structural Properties of Stable Matchings

Theorem

Rural Hospitals Theorem [R86]:

• Over all the stable matchings of the given instance: the set of

matched students is the same and the number of students

matced to each school is also the same.

• Assume that school, h, is not matched to capacity in one

stable matching. Then, the set of students matched to h is the

same over all stable matchings.

Theorem

The set of stable matchings characterize a finite distributive

lattice.
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Two Round Setting

We consider a two round setting.

• In Round R1, mechanism M1 finds a student-optimal stable

matching

• In round R2, the parameters of the problem change, and we

require a mechanism M2 that returns a stable matching

consistent with the new parameters
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Types of Results

• Type A: Mechanism M2 is not allowed to reassingn the

school of any students matched by M1

• Type B: Mechanism M2 is allowed to reassign the school of

students matched by M1, but it must provably minimize ssuch

reassignments

• Type C: NP-Hardness Results for M2
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Setting A1

• Let M be the stable matching found by M1 in R1.

• Let SM denote the students who got matched in M1.

• Let L = S − SM be the set of students who don’t get matched

in round R1

Theorem

There is a polynomial time mechanism M2 that extends matching

M to M ′ so that M ′ is stable w.r.t students S and schools H.

Furthermore M2 yields the largest matching that can be obtained

by the mechanism satisfying these conditions.
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Mechanism

• For each school hj find the first student on its preference list

such that si ∈ SM and si prefers hj SM and si prefers hj to

current school. (Barrier(hj) = si )

• For each si ∈ L update their preference lists to only include

schools where they are left of the barrier for that school.

• Assign each si ∈ L their favorite school from their preference

list

• Return updated matching M ′
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Proof Idea

• Are any blocking pairs induced?

• What about students who didn’t get matched in round R2

• Is it incentive compatible??
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Incentive Compatibility

Example

S1 : H1 H2

S2 : H1 H2

H1 : S1 S2

H2 : S2 S1

Each school has capacity 1 in round R1

• Truthful reporting will result in M = M ′ = (S1,H1), (S2,H2)

• If S2 instead misreports her preference list as (H1, ∅) then

M = (S1,H1), and M ′ = (S1,H1), (S2,H1).

• S2 does better by cheating.
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Setting A2

This setting follows from Setting A1

• Let N, be a set of new students who also arrive in round R2.

• MINNMAXL asks for a stable extension in round R2 that

minimizes the number of students who get matched in N and

subject to that maximize the number of students matched from

L

Theorem

There is a polynomial time mechanism M2 for:

• MINNMAXL

• MAXNMAXL

• MAXN∪L
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Proof Sketch MINNMAXL

• si ∈ N who form blocking pairs with schools must be matched

• Let SNL be the students in N who don’t form blocking pairs,

they won’t be in any matching

• Consider the barriers for schools defined by students in SM and

SNL, and set the barrier to be the stricter of the two.

• update the preference lists of all students in L,N − SNL to

include only schools where they lie to the left of the barrier.

• Matching these students to their favorite school results in a

stable extentions that minimizes the number of students in N,

and subject to that maximizes L

• MAXNMAXL,MAXN∪L can be done similarly
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Some NP Hardness for A2

Theorem

The following problems are NP-Hard:

• MAXLMINN

• MAXNMINL

• Choose k students from N, such that it will maximize the

number of students matched from L
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Setting B1

• In round R2 a set of new schools H ′ arrive, and original

schools can increase their capacity.

• Students can now move, but we want to minize the number of

students who are re-allocated in round R2.

Theorem

There is a polynomial time mechansim M2 that finds a minimum

stable re-allocation with respect to round R1 matching M,

students S , and schools H ∪ H ′
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Setting B1 GS-counterexample

Example

S1 : H2 H1

S2 : H1 H2

H1 : S1 S2

H2 : S2 S1

In round R1 school H1 has one seat and and school H2 arrives in

round R2.

• Round R1 matching is just (S1,H1)

• Running Gale-Shapley in round R2 results in (S1,H2), (S2,H1)

requiring one re-allocation.

• However there is a stable matching (S1,H1), (S2,H2) that

requires no re-allocations. 16



Structural Properties of MSR

Lemma

Each student weakly improves in any minimum stable re-allocation

Lemma

All minimum stable re-allocations move the same set of students,

SR
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Proof Sketch

• Let there be two MSR , such that si is moved in one and not in

the other, i.e.M(si ) = M ′(si ) 6= M ′′(si ).

• Then the following are possible cases for si :

1. S1 = {si ∈ SM |M(si ) = M ′(si ) 6= M ′′(si )}
2. S2 = {si ∈ SM |M(si ) = M ′′(si ) 6= M ′(si )}
3. S3 = {si ∈ SM |M(si ) 6= M ′(si ),M(si ) 6= M ′′(si )}
4. S4 = {si ∈ SM |M(si ) = M ′(si ) = M ′′(si )}

• Consider the matching ML = M ′ ∧M ′′ where each student

goes to the school she prefers less.

• By the first lemma this will send all si in S1, S2 and S4 to their

original schools

• ML requires fewer re-allocations, a contradiction.
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MSR Lattice

Theorem

The set of minimum stable re-allocations form a sub-lattice of the

stable matching lattice.

• You can divide students into two groups moved, fixed

• Since the students who move are fixed, you can define a

smaller stable matching instance over these students

• adding the matching restricted to the fixed studennts will give

a minimum stable re-allocation

19



Mechansim for adding School

• While there exists a school with a vacant seat, and a student

who prefers that school to its current match, match the school

and student

• the above mechanism terminates and returns a school-optimal

minimal stable re-allocation.

(Proof by Induction)

• To get a student-optimal minimum stable re-allocation, find

the moving students from running school-optimal mechanism,

then construct special stable matching instance over moving

students and find a school-optimal matching there.

• Not incentive-compatible!!!!
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Setting B2

• In round R2 a set of new students arrive, the capacity of

schools doesn’t change

Theorem

There is a polynomial mechanism M2 that finds a minimum

stable re-allocation with respect to round R1 maching M,

students S ∪ N, and schools H.
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Open Problems

• Incentive Compatible Mechanisms??

• Approximation Algorithms for NP-Hard Problems??
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Thank You!
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