Stablity-Preserving, Time-Efficient Mechanism for School Choice in Two Rounds

Karthik Gajulapalli, James Liu, Tung Mai, Vijay Vazirani November 23, 2020

Stable Matching

Problem (Stable Matching)

There is a set of n boys and n girls. Each boy has a preference list that is a total order over the girls, and similarly each girl has a preference list that is a total order over the boys.

Blocking Pair: A boy b, and girl g, form a blocking pair to an assignment of boys and girls if they both prefer each other over their partners in the assignment.

Goal: Output a perfect matching of boys and girls with no blocking pairs.

Problem (Stable Matching Problem)

Solution [Gale, Shapley]

There exists a mechanism (Differed Accept) that produces a stable matching with the following properites:

- Differed Accept runs in polynomial time
- Differed Accept produces a girl-optimal stable matching, i.e. each girl gets teh best possible partner she could have gotten in any stable matching
- Differed Accpet is startegy-proof (DSIC) for girls [Dubins,..]

School Choice

Problem (Stable Matching for Schol Choice)

- Set of Schools, $H = \{h_1, ..., h_n\}$
- Set of Students, $S = \{s_1, ...s_m\}$
- Preference list of students over schools l(s_i) for all s_i ∈ S, where l(s_i) = π(H ∪ Ø)
- Preference list of schools over students l(h_j) for all h_j ∈ H, where l(h_j) = π(S ∪ Ø)
- capacity function c : H → Z, such that c(h_j) represents the capacity of school h_j.

Updated Blocking Pair:

- *h_j* preferes *s_i* to one of the students assinged to *h_j* (type 1), or
- h_j is under-filled and h_j prefers s_i to \emptyset (type 2).

Structural Properties of Stable Matchings

Theorem

Rural Hospitals Theorem [R86]:

- Over all the stable matchings of the given instance: the set of matched students is the same and the number of students matced to each school is also the same.
- Assume that school, h, is not matched to capacity in one stable matching. Then, the set of students matched to h is the same over all stable matchings.

Theorem

The set of stable matchings characterize a finite distributive lattice.

We consider a two round setting.

- In Round $\mathcal{R}_1,$ mechanism \mathcal{M}_1 finds a student-optimal stable matching
- In round \mathcal{R}_2 , the parameters of the problem change, and we require a mechanism \mathcal{M}_2 that returns a stable matching consistent with the new parameters

- Type A: Mechanism \mathcal{M}_2 is not allowed to reassingn the school of any students matched by \mathcal{M}_1
- Type B: Mechanism \mathcal{M}_2 is allowed to reassign the school of students matched by \mathcal{M}_1 , but it must provably minimize ssuch reassignments
- Type C: NP-Hardness Results for \mathcal{M}_2

- Let M be the stable matching found by \mathcal{M}_1 in \mathcal{R}_1 .
- Let S_M denote the students who got matched in \mathcal{M}_1 .
- Let $L = S S_M$ be the set of students who don't get matched in round \mathcal{R}_1

There is a polynomial time mechanism \mathcal{M}_2 that extends matching M to M' so that M' is stable w.r.t students S and schools H. Furthermore \mathcal{M}_2 yields the largest matching that can be obtained by the mechanism satisfying these conditions.

- For each school h_j find the first student on its preference list such that s_i ∈ S_M and s_i prefers h_j S_M and s_i prefers h_j to current school. (Barrier(h_j) = s_i)
- For each s_i ∈ L update their preference lists to only include schools where they are left of the barrier for that school.
- Assign each $s_i \in L$ their favorite school from their preference list
- Return updated matching M'

- Are any blocking pairs induced?
- \bullet What about students who didn't get matched in round \mathcal{R}_2
- Is it incentive compatible??

Incentive Compatibility

Example

<i>S</i> ₁ :	H_1	H_2
<i>S</i> ₂ :	H_1	H_2
<i>H</i> ₁ :	S_1	S_2
H_2 :	S_2	S_1

Each school has capacity 1 in round \mathcal{R}_1

- Truthful reporting will result in $M = M' = (S_1, H_1), (S_2, H_2)$
- If S_2 instead misreports her preference list as (H_1, \emptyset) then $M = (S_1, H_1)$, and $M' = (S_1, H_1), (S_2, H_1)$.
- S₂ does better by cheating.

Setting A2

This setting follows from Setting A1

- Let N, be a set of new students who also arrive in round \mathcal{R}_2 .
- MIN_NMAX_L asks for a stable extension in round R₂ that minimizes the number of students who get matched in N and subject to that maximize the number of students matched from L

Theorem

There is a polynomial time mechanism \mathcal{M}_2 for:

- MIN_NMAX_L
- MAX_NMAX_L
- $MAX_{N\cup L}$

Proof Sketch MIN_NMAX_L

- $s_i \in N$ who form blocking pairs with schools must be matched
- Let S_{NL} be the students in N who don't form blocking pairs, they won't be in any matching
- Consider the barriers for schools defined by students in S_M and S_{NL} , and set the barrier to be the stricter of the two.
- update the preference lists of all students in $L, N S_{NL}$ to include only schools where they lie to the left of the barrier.
- Matching these students to their favorite school results in a stable extentions that minimizes the number of students in N, and subject to that maximizes L
- $MAX_N MAX_L, MAX_{N\cup L}$ can be done similarly

The following problems are NP-Hard:

- MAX_LMIN_N
- MAX_NMIN_L
- Choose k students from N, such that it will maximize the number of students matched from L

- In round \mathcal{R}_2 a set of new schools H' arrive, and original schools can increase their capacity.
- Students can now move, but we want to minize the number of students who are re-allocated in round R₂.

There is a polynomial time mechansim \mathcal{M}_2 that finds a minimum stable re-allocation with respect to round \mathcal{R}_1 matching M, students S, and schools $H \cup H'$

Setting B1 GS-counterexample

Example

<i>S</i> ₁ :	H_2	H_1
<i>S</i> ₂ :	H_1	H_2
<i>H</i> ₁ :	S_1	S_2
<i>H</i> ₂ :	S_2	S_1

In round \mathcal{R}_1 school H_1 has one seat and and school H_2 arrives in round \mathcal{R}_2 .

- Round \mathcal{R}_1 matching is just (S_1, H_1)
- Running Gale-Shapley in round \mathcal{R}_2 results in $(S_1, H_2), (S_2, H_1)$ requiring one re-allocation.
- However there is a stable matching $(S_1, H_1), (S_2, H_2)$ that requires no re-allocations.

Lemma

Each student weakly improves in any minimum stable re-allocation

Lemma

All minimum stable re-allocations move the same set of students, S_R

Proof Sketch

- Let there be two MSR, such that s_i is moved in one and not in the other, i.e. $M(s_i) = M'(s_i) \neq M''(s_i)$.
- Then the following are possible cases for *s_i*:

1.
$$S_1 = \{s_i \in S_M | M(s_i) = M'(s_i) \neq M''(s_i)\}$$

2. $S_2 = \{s_i \in S_M | M(s_i) = M''(s_i) \neq M'(s_i)\}$
3. $S_3 = \{s_i \in S_M | M(s_i) \neq M'(s_i), M(s_i) \neq M''(s_i)\}$

4.
$$S_4 = \{s_i \in S_M | M(s_i) = M'(s_i) = M''(s_i)\}$$

- Consider the matching $M_L = M' \wedge M''$ where each student goes to the school she prefers less.
- By the first lemma this will send all s_i in S_1, S_2 and S_4 to their original schools
- *M_L* requires fewer re-allocations, a contradiction.

The set of minimum stable re-allocations form a sub-lattice of the stable matching lattice.

- You can divide students into two groups moved, fixed
- Since the students who move are fixed, you can define a smaller stable matching instance over these students
- adding the matching restricted to the fixed studennts will give a minimum stable re-allocation

- While there exists a school with a vacant seat, and a student who prefers that school to its current match, match the school and student
- the above mechanism terminates and returns a school-optimal minimal stable re-allocation. (Proof by Induction)
- To get a student-optimal minimum stable re-allocation, find the moving students from running school-optimal mechanism, then construct special stable matching instance over moving students and find a school-optimal matching there.
- Not incentive-compatible!!!!

• In round \mathcal{R}_2 a set of new students arrive, the capacity of schools doesn't change

Theorem

There is a polynomial mechanism \mathcal{M}_2 that finds a minimum stable re-allocation with respect to round \mathcal{R}_1 maching M, students $S \cup N$, and schools H.

- Incentive Compatible Mechanisms??
- Approximation Algorithms for NP-Hard Problems??

Thank You!